Publication Types:

Sort by year:

Rapid Vertical Exchange at Fronts in the Northern Gulf of Mexico

Journal Paper
Qu, L., Thomas, L., Wienkers, Aaron F., Hetland, R., Kobashi, D., Taylor J. R., Hsu, F., MacKinnon, J., Shearman, R., & Nash, J.
Nature Communications
Publication year: 2022

Abstract

The Texas-Louisiana Shelf in the Northern Gulf of Mexico is home to the second largest human-caused dead zone in the world. Here, the nutrient-laden, stratified waters of the Mississippi River plume condition hypoxia in a bottom layer during the summer. The plume also generates strong fronts, features of the circulation that are known pathways for the exchange of water between the ocean surface and the deep. Using a combination of high-resolution observations and numerical simulations, we show that the vertical exchange at these fronts can be quite rapid and can lead to the oxygenation of bottom water when the fronts are forced by the summer land-sea breeze. These winds generate strong inertial oscillations, which set up a diurnally-pulsing vertical circulation at the fronts that draws bottom waters up to the surface mixed layer. The simulations suggest that during these “breaths” the rate of oxygenation of the bottom waters is comparable to deoxygenation by the respiration of organic matter over the shelf and hence could play an important role in the evolution of the region’s dead zone.

The influence of front strength on the development and equilibration of symmetric instability. Part 2. Nonlinear evolution

Journal Paper
Wienkers, Aaron F., Thomas L., & Taylor, J. R.
Journal of Fluid Mechanics, 926, A7. doi:10.1017/jfm.2021.684
Publication year: 2021

Abstract

In Part 1 (Wienkers, Thomas & Taylor, J. Fluid Mech., vol. 926, 2021, A6), we described the theory for linear growth and weakly nonlinear saturation of symmetric instability (SI) in the Eady model representing a broad frontal zone. There, we found that both the fraction of the balanced thermal wind mixed down by SI and the primary source of energy are strongly dependent on the front strength, defined as the ratio of the horizontal buoyancy gradient to the square of the Coriolis frequency. Strong fronts with steep isopycnals develop a flavour of SI we call ‘slantwise inertial instability’ by extracting kinetic energy from the background flow and rapidly mixing down the thermal wind profile. In contrast, weak fronts extract more potential energy from the background density profile, which results in ‘slantwise convection.’ Here, we extend the theory from Part 1 using nonlinear numerical simulations to focus on the adjustment of the front following saturation of SI. We find that the details of adjustment and amplitude of the induced inertial oscillations depend on the front strength. While weak fronts develop narrow frontlets and excite small-amplitude vertically sheared inertial oscillations, stronger fronts generate large inertial oscillations and produce bore-like gravity currents that propagate along the top and bottom boundaries. The turbulent dissipation rate in these strong fronts is large, highly intermittent and intensifies during periods of weak stratification. We describe each of these mechanisms and energy pathways as the front evolves towards the final adjusted state, and in particular focus on the effect of varying the dimensionless front strength.

 

The influence of front strength on the development and equilibration of symmetric instability. Part 1. Growth and saturation

Journal Paper
Wienkers, Aaron F., Thomas L., & Taylor, J. R.
Journal of Fluid Mechanics, 926, A6. doi:10.1017/jfm.2021.680
Publication year: 2021

Abstract

Submesoscale fronts with large horizontal buoyancy gradients and O(1) Rossby numbers are common in the upper ocean. These fronts are associated with large vertical transport and are hotspots for biological activity. Submesoscale fronts are susceptible to symmetric instability (SI) – a form of stratified inertial instability which can occur when the potential vorticity is of the opposite sign to the Coriolis parameter. Here, we use a weakly nonlinear stability analysis to study SI in an idealised frontal zone with a uniform horizontal buoyancy gradient in thermal wind balance. We find that the structure and energetics of SI strongly depend on the front strength, defined as the ratio of the horizontal buoyancy gradient to the square of the Coriolis frequency. Vertically bounded non-hydrostatic SI modes can grow by extracting potential or kinetic energy from the balanced front and the relative importance of these energy reservoirs depends on the front strength and vertical stratification. We describe two limiting behaviours as ‘slantwise convection’ and ‘slantwise inertial instability’ where the largest energy source is the buoyancy flux and geostrophic shear production, respectively. The growing linear SI modes eventually break down through a secondary shear instability, and in the process transport considerable geostrophic momentum. The resulting breakdown of thermal wind balance generates vertically sheared inertial oscillations and we estimate the amplitude of these oscillations from the stability analysis. We finally discuss broader implications of these results in the context of current parameterisations of SI.

Nonlinear hydrodynamic instability and turbulence in eccentric astrophysical discs with vertical structure

Journal Paper
Wienkers, Aaron F. & Ogilvie, G. I.
Monthly Notices of the Royal Astronomical Society, Volume 477, Issue 4, July 2018, Pages 4838–4855
Publication year: 2018

Abstract

Non-linear evolution of the parametric instability of inertial waves inherent to eccentric discs is studied by way of a new local numerical model. Mode coupling of tidal deformation with the disc eccentricity is known to produce exponentially growing eccentricities at certain mean-motion resonances. However, the details of an efficient saturation mechanism balancing this growth still are not fully understood. This paper develops a local numerical model for an eccentric quasi-axisymmetric shearing box which generalizes the often-used Cartesian shearing box model. The numerical method is an overall second-order well-balanced finite volume method which maintains the stratified and oscillatory steady-state solution by construction. This implementation is employed to study the non-linear outcome of the parametric instability in eccentric discs with vertical structure. Stratification is found to constrain the perturbation energy near the mid-plane and localize the effective region of inertial wave breaking that sources turbulence. A saturated marginally sonic turbulent state results from the non-linear breaking of inertial waves and is subsequently unstable to large-scale axisymmetric zonal flow structures. This resulting limit-cycle behaviour reduces access to the eccentric energy source and prevents substantial transport of angular momentum radially through the disc. Still, the saturation of this parametric instability of inertial waves is shown to damp eccentricity on a time-scale of a thousand orbital periods. It may thus be a promising mechanism for intermittently regaining balance with the exponential growth of eccentricity from the eccentric Lindblad resonances and may also help explain the occurrence of ‘bursty’ dynamics such as the superhump phenomenon.

Keywords

  • Accretion discs;
  • Hydrodynamics;
  • Instabilities;
  • Turbulence;
  • Waves

3D printed microfluidic circuitry via multijet-based additive manufacturing

Journal Paper
Sochol, R. D., Wienkers, Aaron F., & Lin, L. et al.
Lab on a Chip, Volume 16, 2016, Pages 668-678
Publication year: 2016

Abstract

The miniaturization of integrated fluidic processors affords extensive benefits for chemical and biological fields, yet traditional, monolithic methods of microfabrication present numerous obstacles for the scaling of fluidic operators. Recently, researchers have investigated the use of additive manufacturing or “three-dimensional (3D) printing” technologies – predominantly stereolithography – as a promising alternative for the construction of submillimeter-scale fluidic components. One challenge, however, is that current stereolithography methods lack the ability to simultaneously print sacrificial support materials, which limits the geometric versatility of such approaches. In this work, we investigate the use of multijet modelling (alternatively, polyjet printing) – a layer-by-layer, multi-material inkjetting process – for 3D printing geometrically complex, yet functionally advantageous fluidic components comprised of both static and dynamic physical elements. We examine a fundamental class of 3D printed microfluidic operators, including fluidic capacitors, fluidic diodes, and fluidic transistors. In addition, we evaluate the potential to advance on-chip automation of integrated fluidic systems via geometric modification of component parameters. Theoretical and experimental results for 3D fluidic capacitors demonstrated that transitioning from planar to non-planar diaphragm architectures improved component performance. Flow rectification experiments for 3D printed fluidic diodes revealed a diodicity of 80.6 ± 1.8. Geometry-based gain enhancement for 3D printed fluidic transistors yielded pressure gain of 3.01 ± 0.78. Consistent with additional additive manufacturing methodologies, the use of digitally-transferrable 3D models of fluidic components combined with commercially-available 3D printers could extend the fluidic routing capabilities presented here to researchers in fields beyond the core engineering community.